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Ellipsoidal particles driven by intensity gradients through viscous fluids

T. Ambjörnsson and S. P. Apell
Department of Applied Physics, Chalmers University of Technology and Go¨teborg University, SE-412 96 Go¨teborg, Sweden

~Received 30 October 2001; revised manuscript received 24 September 2002; published 25 March 2003!

We investigate the drift velocityvdrift of ellipsoidal polarizable particles~ellipsoids and coated ellipsoids!,
driven through a viscous fluid by an electric or electromagnetic field intensity gradient. At low Reynolds
number and in the dipole approximationvdrift is proportional to the square of the principal axis along the
direction of motion multiplied by a form factor, which is weakly depending on the shape of the particle, and by
a frequency and shape dependent factorf (v). Near frequencies where the real part of«mf (v) changes sign
(«m is the relative dielectric function of the medium in which the partcle is immersed!, vdrift is sensitive to the
shape of the particle. We suggest that our results can be used for the experimental separation of neutral
polarizable particles with respect to size or shape.

DOI: 10.1103/PhysRevE.67.031917 PACS number~s!: 87.10.1e, 47.15.Gf, 41.20.Cv, 82.45.2h
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I. INTRODUCTION

The manipulation of particles using electromagnetic fie
is an area of great current interest. Nobel prizes have rece
been awarded in physics for the development of methods
allow trapping and cooling of atoms down to a fewmK using
laser light@1# and for creating~using this laser cooling tech
nique! the Bose-Einstein condensates@2,3#. When studying
biological systems two other techniques have become im
tant.Optical tweezersallow manipulation of single dielectric
particles; a strong electromagnetic intensity ‘‘spot’’ is crea
by focusing laser beams through a microscope objective
particle in the spot becomes highly polarized, leading t
large electromagnetic interaction energy. If the spot inten
is large enough, thermal fluctuation cannot move the part
that then becomes trapped. The optical tweezers has, fo
stance, been used to knot DNA molecules@4#, study the mo-
tion of motor proteins@5#, and to induce shape transform
tions in cells@6#. In electrophoresisa static electric field is
used for the separation of particles. If a charged particle
placed in a viscous fluid and is under the action of an ex
nal electric field, there is a net force on the particle wh
~counteracted by the viscous friction force against the fl
molecules! causes the particle to move with a drift veloci

vW drift5mJ•EW , whereEW is the electric field at the particle andmJ
is the so-called mobility tensor of the particle. This allow
separation of particles of different mobility~of different
charges, sizes etc.! @7–10#.

In this study we discuss how to separateneutral particles
such as cells, using electric and electromagnetic fields.
fortunately, electrophoretic separation requires charged
ticles and does not work for neutral particles. Optical twe
zers, on the other hand, can be applied to electrically neu
particles, but only a few particles at a time can be mani
lated. If the particle is immersed in a conducting solvent w
a conductivity different from that of the particle,electromag-
netophoreticseparation may be used@11,12#. This technique
employs the combined effect of electric and magnetic fie
in order to cause motion of the particles. Here we describ
separation method that uses electric or electromagnetic
intensitygradientsand works for both conducting and non
conducting solvents. An electric or electromagnetic field
1063-651X/2003/67~3!/031917~7!/$20.00 67 0319
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tensity gradient exerts a force on a neutral particle, which
therefore able to move through a viscous fluid. In the pr
ence of such a gradient, the drift velocity of the particle
~see next section!

vW drift5Re~KJ•¹W W!, ~1!

whereW is the energy density of the external electric fie
and we have introducedKJ which we refer to as theintensity
gradient mobility tensor. The tensorKJ has dimension@K#
5m3 s/kg and plays the same role for neutral particles
does the mobility tensor for charged particles. As we w
see, the intensity gradient mobility tensor depends on
size, shape, and electric properties of the particle. Besid
depends on the viscosity of the fluid in which the particle
immersed. In the rest of this study we investigateKJ more
closely and in particular: in Sec. II a general expression
KJ is derived. This expression depends on the polarizab
and the hydrodynamic ‘‘effective radius’’ of the particle. I
Sec. III standard expressions for the polarizability and eff
tive radius forellipsoidal particles~uncoated and coated e
lipsoids! are combined with the result in the previous secti
to give the intensity gradient mobility tensor. Finally we di
cuss the separation of neutral particles, such as cells,
possible application.

II. INTENSITY GRADIENT MOBILITY TENSOR

In this section we derive an expression for the intens
gradient mobility tensor of a particle driven through a v
cous fluid in an electric or electromagnetic field intens
gradient~at small Reynolds number! in terms of the polariz-
ability and the hydrodynamic effective radius of the partic

Let us study a particle in a viscous fluid assuming th
there is a time-dependent forceFW (t) on the particle. The
molecules in the fluid collides in a stochastic fashion w
the particle, which then exhibits a random type of moti
that in the general case is described by Langevin’s equa

@13,14#: mdvW (t)/dt5FW (t)2 jJvW (t)1gW (t), wherevW (t) is the
velocity of the particle at timet. The term on the left-hand
side is the inertial term (m is the mass of the particle!. The
second term on the right-hand side is a viscous~dissipative!

term andjJ is the friction tensor of the particle.gW (t) is a
©2003 The American Physical Society17-1
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stochastic force@the ensemble average is zero,^gW (t)&50W ]
and represents the ‘‘thermal collisions’’ by the molecules
the fluid and the particle. The ‘‘amplitude’’ of the stochas
force is determined by the fluctuation-dissipation theor
@14#, which relates this amplitude to the friction.

We are primarily interested in applying our analysis
biological systems such as cells moving with small velocit
through viscous fluids. We will therefore through the rest
this study assume that the dimensionless number

R5
Lvr

h
~2!

is small, i.e., thatR!1. L is a characteristic length of th
particle andh is the viscosity of the fluid. This condition i
assumed to be satisfiedboth for the particle density (r
5rparticle) and the fluid density (r5rfluid). Whenr is taken
as the particle density,R is the ratio between the inertia
force and the viscous force in Langevin’s equation abo
~the conditionR!1 hence allows us to neglect particle ine
tial effects! @15#. When r is taken as the fluid densityR
becomes the so-calledReynolds number, which plays an im-
portant role in hydrodynamics@16#. As an example of smal
R motion, consider a bacterium in water. A bacterium is ty
cally one micron (L;1mm) in size. If such an object move
by a speed,v51 mm/s we haveR;1023 ~assuming that the
density of the bacterium is approximately equal to that
water!. We hence neglect inertial effects (R!1) in this
study, and Langevin’s equation then becomes@14#

FW ~ t !2 jJvW ~ t !1gW ~ t !50. ~3!

This equation is valid for fluids with high viscosity, sma
particle velocities, and sizes.

Let us now consider the drift velocity of the partic
through the fluid. Because of the stochastic nature of
motion of the particle~as contained in Langevin’s equation!,
the particle positionxW must be described in terms of aprob-
ability distribution P(xW ,t) ~or in terms of a probability dis-
tribution for different velocities!. The mean velocity~the
drift velocity! vW drift[^vW & can, however, be obtained without
full knowledge of the probability distributionP(xW ,t). Let us
restrict ourselves to motion along some principal axis of
particle. The viscous force is then in the same direction
the velocity of the particle andjJ is diagonal. We then take
the ensemble average of Eq.~3! in order to obtain the drift
velocity of the particle according to

vdrift,u5
Fu

juu
, ~4!

where juu is the friction constant for motion along theu
direction (u5x,y,z) @17#. We now consider fluctuation
around this mean value as caused by the stochastic f
gJ(t). The mean distance,xdrift , a particle travels under th
influence of the external force during a timet is xdrift
[vdriftt @18#. On top of this @due to the stochastic forc
gW (t)], there is a diffusive motion which tends to spread t
positions of the particles aroundxdrift . Since for diffusive
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motion the ‘‘spread’’ varies asADt ~whereD[kBT/j is the
diffusion constant for the particle! we can always, by choos
ing t sufficiently large, separate particles with differentvdrift .

Let us now take the external force appearing in Eq.~4!
as the the force on a small, neutral polarizable particle
caused by an external electric or electromagnetic field int
sity gradient. We also assume that the magnetic susceptib
of the particle equals the susceptibility of the surround
medium. The general expression in thedipole approximation
for the time-averaged electric force on a neutral particle
@19# Fu(xW ,v)5(vRe@Pv(xW ,v)]Ev* (xW ,v)/]u#/2, where
Pv(xW ,v) is thev component of the total induced dipole mo
ment of the particle andEv(xW ,v) is the electric field at the
position xW of the particle. We now assume that there is
linear relation-
ship between the induced dipole and the electric fi
~linear response! at the particle according toPv(v)
5( r4p«m«0avr(v)Er(v), where«0 is the permittivity of
vacuum and«m is the relative dielectric function of the me
dium surrounding the particle. We have also introduced
polarizability auv(v) of the particle~which has dimension
of volume,@a#5m3). Inserting the above equation into th
equation for the force and taking the form of the electric fie
such that it has only one component, taken to be theu com-
ponent (u5x,y, or z), and such that this component on
depend onu @two examples are~i! the only spatial variation
of the electric field is in the x direction, i.e, EW
5(Ex(x),0,0) ~ii ! the electric field only varies along thez
direction andEW 5(0,0,Ez(z))], we find @20#

Fu5ReS 4pauu

]

]u
WD , ~5!

whereW is the energy density of the electric field~the inten-
sity is obtained by multiplying the energy density by th
speed of lightc) at the particle

W5
1

4
«m«0uEu~u!u2. ~6!

The force is determined by the polarizability, which is
property of the particle, and the gradient of the intens
c¹W W. The force on a neutral particle is thus towards high
field intensities ifa.0.

Let us now consider the friction constantjJ occurring in
Eq. ~4!. The flow of an incompressible fluid around a movin
particle is in the general case obtained by solving~nonlinear!
Navier-Stoke’s equation@16#. The boundary condition at the
interface between the particle and the fluid is that of no-s
and no penetration. The force exerted by the fluid on
particle ~and hence the friction tensor! is thereafter obtained
by integrating the hydrodynamic stress tensor over the
face of the particle. For the case of low Reynolds num
@see Eq.~2!#, Navier-Stoke’s equation is linear. The integr
tion of the stress tensor may then be formally performed@16#
and the result for the friction tensor is@21#

juv56phReff,uv , ~7!
7-2
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ELLIPSOIDAL PARTICLES DRIVEN BY INTENSITY . . . PHYSICAL REVIEW E67, 031917 ~2003!
whereh is the viscosity of the fluid. The 333 tensorReff,uv
~with dimension of length! is the hydrodynamic ‘‘effective
radius’’ of the particle and is most conveniently obtained
performing an asymptotic expansion of the solution to
fluid equations of motion@16#. For a spherical particle, th
effective radius is a scalar equal to the radius of the parti
and the above result is the well-known Stoke’s law@16,22#.
It is interesting to note that the viscous force is proportio
to the effectiveradius ~dimension of length! of the particle
instead of~as might be naively assumed! the cross sectiona
area of the particle. This can be understood through dim
sional arguments; the only parameters entering the ana
areh andu ~for low Reynolds numbers Navier-Stoke’s equ
tion is independent of the fluid densityr). The only combi-
nation of these quantities giving dimension of force ishLu
~since@h#5kg/ms), whereL is a characteristic length sca
of the particle.

We are now in a position to obtain a general express
for the intensity gradient mobility tensor of a particle movin
~along one of its principal directions! in an electric or elec-
tromagnetic field intensity gradient through a viscous flu
By combining Eqs.~1!, ~4!, ~5!, and~7! we obtain the inten-
sity gradient mobility tensor

hKuu5
2

3

auu

Reff,uu
. ~8!

To obtain a large flow of particles towards high intens
regions we should have high intensity gradients@see Eq.~1!#,
large polarizability and small viscosity, and small effecti
radius of the particle. Notice that the onlyparticle param-
eters entering the expression for the intensity gradient mo
ity tensor are the polarizability and the hydrodynamic effe
tive radius. Since both of these entities are, in gene
dependent on the shape and size of the particle,vdrift depends
in a nontrivial fashion on the geometrical structure of t
particle under consideration. By putting neutral particles i
an electric field gradient, it should therefore be possible
separate different shapes and sizes. In the following sec
we investigate the drift velocity of elliptic particles as a
example.

III. ELLIPSOIDAL PARTICLES

In this section we combine the well-known results for t
hydrodynamic effective radius and the polarizability forel-
lipsoidal particles~ellipsoids and coated ellipsoids! in order
to obtain the drift velocityvdrift ~illustrations are only given
for spheroidalparticles, i.e. particles with two of the princ
pal axes equal!. We consider only cases below where t
gradient of the intensity is parallel tovdrift , i.e., where the
system has already come to a ‘‘stationary’’ state concern
torques.

The polarizabilityauv for a homogeneous particle is ob
tained through the solution of Maxwell’s macroscopic equ
tions. In the limit of long wavelengthsl of the electric field
compared to a typical length scaleL of the object,L/l!1,
the electrostatic approximationcan be used in order to fin
auv @23#. The result for the polarizability for an ellipsoidand
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for a coated ellipsoid is then@23,24#

auu5
V

4pnu
f ~v,nu!, ~9!

where the depolarization factornu is defined in Eq.~A3! and
depends on the principal radiibu (u5x,y,z) of the particle.
nu contains all information on the shape of the particle.V
54pbxbybz/3 is the total volume occupied by the ellipti
particle~see Fig. 1!. The functionf (v,nu) is different for the
ellipsoid and the coated ellipsoid. For the ellipsoid we ha

f ell~v,nu!5
«p~v!21

«p~v!2111/nu
. ~10!

We have defined«p(v)[«part(v)/«m(v), where the~com-
plex! dielectric function for the ellipsoid is denoted b
«part(v) and the dielectric function for the medium surroun
ing the particle is as before«m(v). Notice that the complex
dielectric functions include the effect of both ‘‘free’’~ions or
electrons! and ‘‘bound’’ charges@25#. Let us now consider
f (v,nu) for a coated ellipsoid. Denote the dielectric functio
of the inner ellipsoid~with principal axesax , ay , andaz ,
see Fig. 1! by « inner(v). Similarly denote the dielectric func
tion of the coating by«coat(v). We then have@23#

FIG. 1. Model geometry,~top! an uncoated ellipsoid with prin-
cipal axesbx , by , andbz. ~Bottom! A cut through a coated ellip-
soid. The principal axes perpendicular to the paper are of lengtby

~the outer ellipsoid! anday ~the inner ellipsoid!. When considering
motion of spheroidswe let by5bz anday5az and distinguish be-
tween~i! motion along the rotationally invariant axis~motion along
thex axis! and~ii ! motion perpendicular to the rotationally invarian
axis ~motion along thez axis!.
7-3



re
-

he

te
a
ds
vi

b

.

e
th
n

ds

iu

-
he
e

x

e

1
h

e
the

e

re

r-

in-
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f coat~v,nu!

5
~«c21!@«c1~« i2«c!g#1«c~« i2«c!Vi /V

~«c2111/nu!@«c1~« i2«c!g#1«c~« i2«c!Vi /V
,

~11!

where «c(v)[«coat(v)/«m(v) and « i(v)[« inner~v!/«m~v!.
We have also introducedg[nu

i 2nuVi /V, where V is the
total volume of the particle andVi54paxayaz/3 is the vol-
ume occupied by the inner ellipsoid.nu

i is the depolarization
factor of the inner elliptical surface and is obtained by
placingbu by au in Eq. ~A3!. Notice that the above expres
sion for f (v,nu) reduces to that given by Eq.~10! as it
should, if the dielectric functions for the coating and t
inner ellipsoid are equal,«c5« i , or if the coating thickness
is zero,Vi5V.

We now turn to the problem of the viscous force exer
on an ellipsoidal particle moving along one of its princip
axes in a viscous fluid. The solution of the low Reynol
number Navier-Stoke’s equation and the corresponding
cous force was worked out in Ref.@26#. For motion along the
u axis, the hydrodynamic effective radius was found to
@27#

Reff,uu5
1

p

V

Q1bu
2nu

, ~12!

wherebu is the principal radii along the direction of motion
The depolarization factor is as before given by Eq.~A3! and
Q is given in Eq.~A1!; both of these entities depend on th
shape of the particle. It is interesting to note that both
polarizability and the hydrodynamic effective radius depe
on the very samenu . However, the effective radius depen
on the shape also throughQ.

The intensity gradient mobility is given by Eq.~8! where,
as we have seen, both the polarizability and effective rad
depend on the particle shape. We now combine Eqs.~9! and
~12! in order to find the intensity gradient mobility tensor

hKuu5
l u
2

6
guf ~v,nu!, ~13!

where we have introducedl u52bu which is the length of the
principal axis along the direction of motion.f (v,nu) is given
by Eq. ~10! or ~11!, and we have also introduced

gu[
1

4 S 11
Q

bu
2nu

D . ~14!

From Eqs.~1! and ~13! we see that the drift velocity is in
versely proportional to the viscosity and proportional to t
square length of the axis, along which the particle mov
multiplied by a form factorgu depending on the ellipticity,
and by a frequency and shape dependent factorf (v,nu).

Let us first considergu . Using the results in the Appendi
it is possible to obtain an analytical expression forgu for the
case of spheroidal particles~i.e., ellipsoidal particles which
have two of their principal axes equal!, see Fig. 1. We choos
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by5bz ~anday5az). The shape dependent factorgu is then
completely described by the ellipticitye2[12bz

2/bx
2 ~where

bx andbz are the two independent principal radii, see Fig.!.
When evaluatinggu for a spheroid we need to distinguis
between two cases:~i! gx determinesvdrift for motion along
the rotationally invariant axis~motion alongx axis in Fig. 1!
~ii ! gz gives the velocity for motion perpendicular to th
rotationally invariant axis, i.e., the spheroid moves along
z axis in Fig. 1. Using Eqs.~A11! and ~A12! we then find

gx5
1

4 F11e21
1

nx~e!
~12e2!G ~15!

and

gz5
1

4~12e2!
S 123e21

1

nz~e! D , ~16!

wherenx(e) is given by Eqs.~A5! and ~A7!. nz(e) is given
by Eqs.~A6! and ~A8!. Notice that the above results reduc
to the result for a spheregu51 in the limit e→0. In Fig. 2
the ‘‘correction’’ form factorsgx and gz are plotted. The
correction form factors are only weakly dependent one; for
the interval shown in Fig. 2 the deviation from the sphe
result is less than 30%. Corrections to thel u

2 dependence of
the drift velocity ~for fixed l u and f ) are found for a very
elongated~‘‘cigar-shaped’’! prolate spheroids, where the co
rection factor is less than one (,1) for motion along their
long axis and larger than one (.1) for motion along their
shortest axis. For very thin~‘‘pancake-shaped’’! oblate sphe-
roids the correction factor is larger than one (.1) for motion
along the shortest axis and less than one (,1) for motion
along the large axis. Hence for fixed values off ~far from any
resonance frequency of the particle, see below!, the intensity
gradient mobility tensor is insensitive to the shape and

FIG. 2. The form factorgu @gu (u5x,z) is proportional to the
drift velocity for a spheroid alongu] as a function of ellipticity,
e2512bz

2/bx
2 , see Fig. 1. The dashed~– –! curve corresponds to

gx and the solid curve (2) corresponds togz . Notice thatgu is
only weakly depending on the ellipticity~shape!.
7-4
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stead the squared length of the axis along the direction
motion predominantly determines the drift velocity.

The frequency dependent part of the drift velocity is co
tained in f (v,nu). We notice from Eqs.~1!, ~6!, ~8!, and~9!
that if there exists a frequencyv0 such that Re@«mf (v,nu)#
changes sign, then forv,v0 the particle moves in the op
posite direction compared to the case whenv.v0 ~for v
5v0 the drift velocity is zero!. Sincef (v,nu) depend on the
geometry of the particle but in general not its size, the f
quencyv0 will depend on the shape of the particle. Th
forms the basis for shape dependent separation of ellipso
particles; by tuning the frequency of the electric field app
priately one may, for instance, make particles of differe
shapes go in opposite direction. One example of when
happens is if«mf (v,nu) has a pole at the frequencyv0 ~the
imaginary part of«mf is large!. Then ~through the Kramer-
Kronig relation and hence causality! the real part of the po-
larizability changes sign@28#. Precisely at the resonance fr
quency v0 we have that Re(«mf )50, and therefore the
electric force on the particle is zero@see Eqs.~1! and ~13!#.
However, the imaginary part of«mf is large atv0 and a
strong absorption occurs either in the solvent@ Im(«m) is
large# or in the particle@ Im( f ) is large#. One then gets heat
ing of the solvent and corresponding convection effect m
be important at this frequency. One must therefore be car
to tune the frequency sufficiently far below or abovev0 in
order to avoid convection effects that may affect the sh
dependent separation discussed in this paragraph. From
~10! we see thatf ell has poles at frequenciesv0 such that
«p(v0)5121/nu . From Eq. ~11! we notice that a coated
ellipsoid, in general, has poles at different frequencies t
does an uncoated particle. What frequency range that is m
appropriate for separation is thus determined by the
quency dependence of the dielectric functions. We wish
keep our results as general as possible, and do not con
any specific dielectric function~which in turn would require
a microscopic treatment!.

A particularly interesting case of a coated particle is a c
~the coating being the cell membrane!. We are currently in-
vestigating these kinds of structures using microscopic m
els for the dielectric functions of the cell membrane and
cell interior. In particular, we want to find out whether the
are frequencies such that Re@«mf (v,nu)# changes sign,
which would allow for efficient separation of cells with re
spect to shape. An additional complication in the study
cells is that their membranes are ‘‘soft,’’ and hence elec
field induced deformations can play a role in their respo
to an external field. Furthermore, the dielectric function
the cell membrane need not be isotropic.

The method described so far separates particles intomov-
ing bands~where the particles in different bands have diffe
ent sizes, shapes, or electric properties!. Let us finally discuss
the possibility of separating particles into stable~nonmoving!
distinct bands, i.e., the particles becoming trapped~having
zero drift velocity and not being able to diffuse out of th
band! at different positions in the solvent depending on th
properties. One such stable band separation techniqu
based on the idea of using a gradient in the dielectric fu
tion of the surrounding medium. As noted above the d
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velocity is zero~the particle is ‘‘trapped’’! if the frequency of
the electric or electromagnetic field equals a resonance
quency in the combined particle-surrounding medium sys
or if the dielectric function of the particle equals that of th
surrounding medium. A dielectric gradient therefore allo
separation of neutral particles into stable bands, where
positions of the bands depend on shape or dielectric pro
ties of the particles@12#.

We conclude that our scheme allows experimental se
ration of particles with different lengths of the axes along t
direction of motion by using off-resonant electric fields. B
applying a field near a frequencyv0 ~for instance a reso-
nance frequency!, at which Re@«mf (v)# changes sign@«m is
the relative dielectric function of the medium andf (v) is the
frequency dependent part of the polarizability# particles of
different shape can be separated.
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APPENDIX: ELLIPTIC SHAPE FUNCTIONS

In this appendix we give the definitions of different en
ties used in the paper.

Let us first define

Q[
bxbybz

2 E
0

` ds

R~s!
, ~A1!

where

R~s!5@~bx
21s!~by

21s!~bz
21s!#1/2, ~A2!

bu (u5x,y,z) are the principal radii of an ellipsoid. We als
define the so-calleddepolarization factors

nu[
bxbybz

2 E
0

` ds

~bu
21s!R~s!

. ~A3!

It is straightforward to show that the depolarization facto
satisfy the sum rule@24#,

nx1ny1nz51. ~A4!

From this sum rule we directly obtain~by symmetry! the
depolarization factors for a sphere:nx5ny5nz51/3.

The entitiesQ and nx , ny , and nz can be analytically
evaluated for a spheroidby5bz . In order to be able to evalu
ate the above integrals, we have to distinguish between
different shapes:prolatespheroids 1>e2[12bz

2/bx
2>0 and

oblatespheroidse2<0 ~see Fig. 1!. In the case of a prolate
spheroid we have

nxuprolate5
12e2

2e3 F lnS 11e

12eD22eG . ~A5!

By the sum rule, we furthermore have
7-5
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nzuprolate5nyuprolate5
1

2
~12nxuprolate!

5
1

2e2 F12S 12e2

2e D lnS 11e

12eD G . ~A6!

In the case of an oblate spheroid, we have (q252e2>0)

nxuoblate5
11q2

q3
~q2arctanq!. ~A7!

By the sum rule we find

nzuoblate5nyuoblate5
1

2
~12nxuoblate!

5
1

2q2 S 11q2

q
arctanq21D . ~A8!

Let us now evaluateQ. Let us start with the case of a prola
shape. Equation~A1! then becomes

Quprolate5
bz

2

2e
lnS 11e

12eD . ~A9!
v

n,

n

.

.

m.

ics

icl
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In the case of an oblate shape, we get (q252e2>0)

Quoblate5
bz

2

q
arctanq. ~A10!

The results above forQ andnz , ny , andnx completely de-
terminegu @Eq. ~14!# for oblate and prolate shapes.

By the above relations it is possible to relateQ to the
depolarization factors. Combining Eqs.~A5!, ~A7!, and~A9!,
we find

Q

bx
2

5e2~nx21!11. ~A11!

Notice that this result is valid for both prolate (e2.0) and
oblate (e2,0) shapes. It is also straightforward to show th

Q

bz
2

5
122e2nz

12e2
. ~A12!

Also this result is valid for both prolate and oblate spheroi
t the
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]P

]t
5D

]2P

]x2
1vdrift

]P

]x
,

where we have introduced the diffusion constantD[kbT/j.
Assuming that the particle initially is atx50 @ i.e, P(x,t
50)5d(x)], this equation can be solved for the probabil
distributionP(x,t). The result is@14#

P~x,t!5exp@2~x2vdriftt !
2/4Dt#/~4pDt !1/2,

whereD[kBT/j is the diffusion constant. The mean positio
of the particle is hencexdrift[vdriftt. There is also a diffusiona
spread;ADt which tends spread the positions of the partic
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