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Ellipsoidal particles driven by intensity gradients through viscous fluids
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We investigate the drift velocity 4, of ellipsoidal polarizable particlegllipsoids and coated ellipsoids
driven through a viscous fluid by an electric or electromagnetic field intensity gradient. At low Reynolds
number and in the dipole approximatian,; is proportional to the square of the principal axis along the
direction of motion multiplied by a form factor, which is weakly depending on the shape of the particle, and by
a frequency and shape dependent fa¢fes). Near frequencies where the real partegff (w) changes sign
(em Is the relative dielectric function of the medium in which the partcle is immersgg; is sensitive to the
shape of the particle. We suggest that our results can be used for the experimental separation of neutral
polarizable particles with respect to size or shape.
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I. INTRODUCTION tensity gradient exerts a force on a neutral particle, which is

therefore able to move through a viscous fluid. In the pres-

The manipulation of particles using electromagnetic fields;nce of such a gradient, the drift velocity of the particle is
is an area of great current interest. Nobel prizes have recentlgee next section

been awarded in physics for the development of methods that o

allow trapping and cooling of atoms down to a fem( using Ugiie= Re(K- VW), (1)
Ia_ser light[1] and f_or cr_eating(using this laser cooling t?Ch' whereW is the energy density of the external electric field
nique the Bose-Einstein condensafes3]. When studying ) < . .
biological systems two other techniques have become impo@nd yve have .njntroduceld which we rSfer to gs thmjcensﬂy
tant. Optical tweezersllow manipulation of single dielectric 9radient mobility tensorThe tensorK has dimensiori K]

—m3 f
particles; a strong electromagnetic intensity “spot” is created . " S/kg and plays the same role for neutral particles as

. . o oes the mobility tensor for charged particles. As we will
bgr];ﬁjgsi':gthlgs;ro?eserzint]zr:uh?hh? mg;c:iszcggelgabéie:tl\{[i. 'gee, the intensity gradient mobility tensor depends on the
P pot be ighly p ’ NG 10 &;ze, shape, and electric properties of the particle. Besides it
large electromagnetic interaction energy. If the spot intensityye nen g on the viscosity of the fluid in which the particle is
is large enough, thermal fluctuation cannot move the particle

that then becomes trapped. The optical tweezers has, for jmmersed. In the rest O_f this study we investigtemore
stance, been used to knot DNA molecudk study the mo- E!qsely a.md in pa-lrtlcular. |n. Sec. Il a general expres§|on-f.0r
tion of motor proteing5], and to induce shape transforma- K is derived. This expression depen.ds on the poIa'r|zab|I|ty
tions in cells[6]. In electrophoresisa static electric field is and the hydrodynamic e_ffectlve radius O.f th(_a_partlcle. In
used for the separation of particles. If a charged particle i?S_ec. i _standard_ Expressions for the polarizability and effec-
placed in a viscous fluid and is under the action of an extert V€ radius forellipsoidal particles(uncoated and coated el-
nal electric field, there is a net force on the particle which"psmds) are combined with the resuit in the previous section

. o . . o give the intensity gradient mobility tensor. Finally we dis-
(counteracted by the viscous friction forc'e agalnst the 1E!u'dlcuss the separation of neutral particles, such as cells, as a
molecule$ causes the particle to move with a drift velocity D

> N ossible application.
vqit= & - E, whereE is the electric field at the particle arid
is the so-called mobility tensor of the particle. This allows [I. INTENSITY GRADIENT MOBILITY TENSOR
separation of particles of different mobilityof different
charges, sizes ejd.7-10.
In this study we discuss how to separatutral particles

In this section we derive an expression for the intensity
gradient mobility tensor of a particle driven through a vis-
) : M cous fluid in an electric or electromagnetic field intensity
such as cells, using elec.trlc and ellectromagnenc fields. U jradient(at small Reynolds numbein terms of the polariz-
fortunately, electrophoretic separation requires charged pakyjjity and the hydrodynamic effective radius of the particle.

ticles and does not work for neutral particles. Optical twee- | et ys study a particle in a viscous fluid assuming that

zers, on the other hand, can be applied to electrically neutr%ere is a time-dependent ford%(t) on the particle. The
particles, but only a few particles at a time can be manipu- X

lated. If the particle is immersed in a conducting solvent Withmoleculgs n th(_e fluid colllde_s_m a stochastic fashion W'th
a coﬁductivity different from that of the particlelectromag- the particle, which then exhibits a random type of motion

. ; ) . that in the general case is described by Langevin's equation
netophoreticseparation may be us¢til,12. This technique ~ - - . o
employs the combined effect of electric and magnetic fieldd13,14: mdu(t)/dt=F(t) — £u(t) +g(t), whereuv(t) is the
in order to cause motion of the particles. Here we describe ¥elocity of the particle at time. The term on the left-hand
separation method that uses electric or electromagnetic fieide is the inertial termr( is the mass of the partigleThe
intensity gradientsand works for both conducting and non- Second term on the right-hand side is a viscalissipative
conducting solvents. An electric or electromagnetic field in-term and ¢ is the friction tensorof the particle.g(t) is a
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stochastic forcdthe ensemble average is ze(gj(t))=0]  motion the “spread” varies agDt (whereD=kgT/{ is the
and represents the “thermal collisions” by the molecules indiffusion constant for the particleve can always, by choos-
the fluid and the particle. The “amplitude” of the stochastic ing t sufficiently large, separate particles with differenf .
force is determined by the fluctuation-dissipation theorem Let us now take the external force appearing in E4.
[14], which relates this amplitude to the friction. as the the force on a small, neutral polarizable particle as
We are primarily interested in applying our analysis tocaused by an external electric or electromagnetic field inten-
biological systems such as cells moving with small velocitiessity gradient. We also assume that the magnetic susceptibility
through viscous fluids. We will therefore through the rest ofof the particle equals the susceptibility of the surrounding
this study assume that the dimensionless number medium. The general expression in tfipole approximation
for the time-averaged electric force on a neutral particle is
R Lup @ [19] Fu(X,0)==,RdP,(X,0)dEF(X,w)/du]/2, where
7 P,(X,w) is thev component of the total induced dipole mo-
ment of the particle an&, (X, ) is the electric field at the
is small, i.e., thalR<1. L is a characteristic length of the position X of the particle. We now assume that there is a
particle andy is the viscosity of the fluid. This condition is |inear relation-
assumed to be satisfiedoth for the particle density ship between the induced dipole and the electric field
= Pparticld @nd the fluid densityd= pq,iq). Whenp is taken  (linear response at the particle according toP,(w)
as the particle densityR is the ratio between the inertial =3 47e eqa,,(w)E, (), Wheree, is the permittivity of
force and the viscous force in Langevin's equation aboveacuum anck, is the relative dielectric function of the me-
(the conditionR<1 hence allows us to neglect particle iner- dium surrounding the particle. We have also introduced the
tial effecty [15]. When p is taken as the fluid densitR  polarizability «,,(®) of the particle(which has dimension
becomes the so-calle®eynolds numbewhich plays anim-  of volume,[ a]=m?). Inserting the above equation into the
portant role in hydrodynamids6]. As an example of small equation for the force and taking the form of the electric field
R motion, consider a bacterium in water. A bacterium is typi-such that it has only one component, taken to beutcem-
cally one micron L~ 1um) in size. If such an object moves ponent (1I=x,y, or z), and such that this component only

by a speedy =1 mm/s we hav&®~ 103 (assuming that the depend oru [two examples aré) the only spatial variation
density of the bacterium is approximately equal to that of ie E

. . . . f the electric field is in thex direction,
waten. We hence_ neglect |_nert|al effectR«1) in this =(E,(x),0,0) (ii) the electric field only varies along the
study, and Langevin’s equation then becorfie§

direction andE = (0,0E,(2))], we find [20]

F(t)— &6(t)+G(1)=0. (3) P

. . . . . . . . . Fo= Re( 47Tauu_W)r (5
This equation is valid for fluids with high viscosity, small au

particle velocities, and sizes. ) ) o )

Let us now consider the drift velocity of the particle WhereWis the energy density of the electric figithe inten-
through the fluid. Because of the stochastic nature of th&ity iS obtained by multiplying the energy density by the
motion of the particldas contained in Langevin's equatjpn SP€ed of lightt) at the particle
the particle positiork must be described in terms ofpaob-
ability distribution P(X,t) (or_ in terms of a probability dis- W= EsmsolEu(u)|2. (6)
tribution for different velocities The mean velocity(the 4
drift velocity) v4iw=(v) can, however, be obtained without a _ _ o S
full knowledge of the probability distributioR(xX,t). Letus  The force is determined by the polarizability, which is a
restrict ourselves to motion along some principal axis of the®roperty of the particle, and the gradient of the intensity
particle. The viscous force is then in the same direction asVW. The force on a neutral particle is thus towards higher

the velocity of the particle and is diagonal. We then take field intensities ifa>0.

the ensemble average of E®) in order to obtain the drift Let us now consider the friction constagtoccurring in
velocity of the particle according to Eq. (4). The flow of an incompressible fluid around a moving
particle is in the general case obtained by sol\imgnlineaj
. :E 4) Navier-Stoke’s equatiofl6]. The boundary condition at the
dnftu™ ¢ interface between the particle and the fluid is that of no-slip

and no penetration. The force exerted by the fluid on the
where &, is the friction constant for motion along the  particle (and hence the friction tensois thereafter obtained
direction (U=x,y,z) [17]. We now consider fluctuations py integrating the hydrodynamic stress tensor over the sur-
around this mean value as caused by the stochastic forggce of the particle. For the case of low Reynolds number
g(t). The mean distancey, a particle travels under the [see Eq(2)], Navier-Stoke’s equation is linear. The integra-
influence of the external force during a tinteis Xgiw  tion of the stress tensor may then be formally perforiia]

=vgirt [18]. On top of this[due to the stochastic force and the result for the friction tensor i81]
g(t)], there is a diffusive motion which tends to spread the

positions of the particles aroundy; . Since for diffusive Eu =0T 7Rt up » @
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where 7 is the viscosity of the fluid. The 83 tensorRgg ,
(with dimension of lengthis the hydrodynamic “effective
radius” of the particle and is most conveniently obtained by
performing an asymptotic expansion of the solution to the
fluid equations of motioni16]. For a spherical particle, the
effective radius is a scalar equal to the radius of the particle,
and the above result is the well-known Stoke’s Id\6,22.

It is interesting to note that the viscous force is proportional
to the effectiveradius (dimension of lengthof the particle b,
instead of(as might be naively assumgethe cross sectional
area of the particle. This can be understood through dimen-
sional arguments; the only parameters entering the analysis
are » andu (for low Reynolds numbers Navier-Stoke’s equa-
tion is independent of the fluid densip). The only combi-
nation of these quantities giving dimension of forcepisu
(since[ n]=kg/ms), whereL is a characteristic length scale

of the particle.

We are now in a position to obtain a general expression
for the intensity gradient mobility tensor of a particle moving
(along one of its principal directionsn an electric or elec-
tromagnetic field intensity gradient through a viscous fluid.
By combining Eqs(1), (4), (5), and(7) we obtain the inten-
sity gradient mobility tensor

FIG. 1. Model geometrytop) an uncoated ellipsoid with prin-
cipal axesb,, by, andb,. (Bottom) A cut through a coated ellip-
PKyu== ' (8) soid. The principal axes perpendicular to the paper are of lemgth

3 Reffuu (the outer ellipsoilanda, (the inner ellipsoigl When considering
motion of spheroidswe leth,=b, anda,=a, and distinguish be-
To obtain a large flow of particles towards high intensity tween(i) motion along the rotationally invariant axisiotion along
regions we should have high intensity gradidisese Eq(1)],  thexaxis) and(ii) motion perpendicular to the rotationally invariant
large polarizability and small viscosity, and small effective axis (motion along thez axis).
radius of the particle. Notice that the onparticle param-
eters entering the expression for the intensity gradient mobilfor a coated ellipsoid is thef23,24]
ity tensor are the polarizability and the hydrodynamic effec-
tive radius. Since both of these entities are, in general,
dependent on the shape and size of the partigig, depends
in a nontrivial fashion on the geometrical structure of the
particle under consideration. By putting neutral particles into

an electric field gradient, it should therefore be possible towhere the depolarization factay, is defined in Eq(A3) and

separate different shapes and sizes. In the following sectio([}e ends on the principal radi, (u=x,y,Z) of the particle
we investigate the drift velocity of elliptic particles as an P P P L AU=X,Y, P :

2 ay

flw,ny), (€)

a =
Y 4an,

n, contains all information on the shape of the partidle.

example. =4mb,byb,/3 is the total volume occupied by the elliptic
particle(see Fig. 1L The functionf(w,n,) is different for the
IIl. ELLIPSOIDAL PARTICLES ellipsoid and the coated ellipsoid. For the ellipsoid we have
In this section we combine the well-known results for the
hydrodynamic effective radius and the polarizability &if ep(w)—1
lipsoidal particles(ellipsoids and coated ellipsoida order feu(w,nu):m- (10
p u

to obtain the drift velocity 4 (illustrations are only given
for spheroidalpatrticles, i.e. particles with two of the princi-
pal axes equal We consider only cases below where theWe have defined  ,(w)=¢p,{w)/en(w), Where the(com-
gradient of the intensity is parallel toy;, i.e., where the plex) dielectric function for the ellipsoid is denoted by
system has already come to a “stationary” state concerning,,{ ) and the dielectric function for the medium surround-
torques. ing the particle is as before,,(w). Notice that the complex
The polarizability,, for a homogeneous particle is ob- dielectric functions include the effect of both “fregions or
tained through the solution of Maxwell’s macroscopic equa-electron$ and “bound” chargeq25]. Let us now consider
tions. In the limit of long wavelengths of the electric field f(w,n,) for a coated ellipsoid. Denote the dielectric function
compared to a typical length scdleof the object,L/\<1, of the inner ellipsoid(with principal axesa,, a,, anda,,
the electrostatic approximatiowan be used in order to find see Fig. 1 by &ipne{®). Similarly denote the dielectric func-
ay, [23]. The result for the polarizability for an ellipso@hd  tion of the coating bye .. @). We then havé23]
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fcoa @,Ny)
(ec—Dlect(ei—ec)vltecei—e)ViIV
(ec—1+1ny[ect(ei—ec)ylteclei—e) VIV’
(13)

where e () =&¢oaf @)/ em(w) and &i(®)=eipnel@)/em(w). ) ;
We have also introduce¢=n,—n,V;/V, whereV is the & oblate : prolate *
total volume of the particle and;=4ma,a,a,/3 is the vol- 0.6- iy ]
ume occupied by the inner ellipsoid, is the depolarization
factor of the inner elliptical surface and is obtained by re- ¢4t -
placingb, by a, in Eqg. (A3). Notice that the above expres- §
sion for f(w,n,) reduces to that given by Eq10) as it 0.2} ? .
should, if the dielectric functions for the coating and the
inner ellipsoid are equak.=¢;, or if the coating thickness 0 : . ' .
) -2 -15 -1 -05 0 0.5 1
Is zero,V;=V. , ellipticity, &

We now turn to the problem of the viscous force exerted
on an ellipsoidal particle moving along one of its principal  FIG. 2. The form factog, [g, (u=Xx,z) is proportional to the
axes in a viscous fluid. The solution of the low Reynoldsdrift velocity for a spheroid alongi] as a function of ellipticity,
number Navier-Stoke’s equation and the corresponding vise?=1-b2/b?, see Fig. 1. The dashdé —) curve corresponds to
cous force was worked out in R¢R6]. For motion along the g, and the solid curve {) corresponds t@,. Notice thatg, is
u axis, the hydrodynamic effective radius was found to beonly weakly depending on the ellipticitishapg.
[27]

b,=b, (anda,=a,). The shape dependent facty is then

1V completely described by the ellipticig?=1—bZ/b? (where
P m (12 b, andb, are the two independent principal radii, see Fig. 1
uu When evaluatingy, for a spheroid we need to distinguish

whereb, is the principal radii along the direction of motion. Petween two casest) gy determines 4 for motion along
The depolarization factor is as before given by B&8) and  the rotationally invariant axiémotion alongx axis in Fig. 3
Q is given in Eq.(A1); both of these entities depend on the (i) g, gives the velocity for motion perpendicular to the
shape of the particle. It is interesting to note that both theotationally invariant axis, i.e., the spheroid moves along the
polarizability and the hydrodynamic effective radius depend? axis in Fig. 1. Using EqsiA1l) and(A12) we then find
on the very same,,. However, the effective radius depends
on the shape also through

The intensity gradient mobility is given by E(B) where,
as we have seen, both the polarizability and effective radius
depend on the particle shape. We now combine Ejsand and
(12) in order to find the intensity gradient mobility tensor

1 1
|2 gz=—(1—3e2+ ) (16)
K= Guf(@.ny), (13) 4(1-¢?) n,(€)

eff,uu—

1+e’+

(1-€?) (15)

9=y ny(e)

, L wheren,(e) is given by Eqs(A5) and(A7). n,(e) is given
where we have introducdg=2b, which is the length of the 1, £ (A6) and (A8). Notice that the above results reduce
principal axis along the direction of motiof(w,n,) is given {3 the result for a spherg,=1 in the limite—0. In Fig. 2

by Eqg.(10) or (11), and we have also introduced the “correction” form factorsg, and g, are plotted. The

correction form factors are only weakly dependentepifor
g EE 1+ Q (14) the interval shown in Fig. 2 the deviation from the sphere
44 b2n,/ result is less than 30%. Corrections to tiedependence of

the drift velocity (for fixed I, and f) are found for a very
From Egs.(1) and (13) we see that the drift velocity is in- elongated“cigar-shaped” prolate spheroids, where the cor-
versely proportional to the viscosity and proportional to therection factor is less than one<(1) for motion along their
square length of the axis, along which the particle moveslong axis and larger than one>(1) for motion along their
multiplied by a form factorg, depending on the ellipticity, shortest axis. For very thiffpancake-shapedy’ oblate sphe-
and by a frequency and shape dependent fadtorn,,). roids the correction factor is larger than oneX) for motion
Let us first consideg, . Using the results in the Appendix along the shortest axis and less than orel] for motion
it is possible to obtain an analytical expressiondgifor the  along the large axis. Hence for fixed valued ¢far from any
case of spheroidal particlége., ellipsoidal particles which resonance frequency of the particle, see bgldle intensity
have two of their principal axes eqliasee Fig. 1. We choose gradient mobility tensor is insensitive to the shape and in-

031917-4



ELLIPSOIDAL PARTICLES DRIVEN BY INTENSITY . .. PHYSICAL REVIEW E67, 031917 (2003

stead the squared length of the axis along the direction ofelocity is zero(the particle is “trapped] if the frequency of
motion predominantly determines the drift velocity. the electric or electromagnetic field equals a resonance fre-

The frequency dependent part of the drift velocity is con-quency in the combined particle-surrounding medium system
tained inf(w,n,). We notice from Eqgs(1), (6), (8), and(9)  or if the dielectric function of the particle equals that of the
that if there exists a frequenay, such that Ree,f(w,n,)] surrounding medium. A dielectric gradient therefore allows
changes sign, then fap<w, the particle moves in the op- separation of neutral particles into stable bands, where the
posite direction compared to the case wher w, (for positions of the bands depend on shape or dielectric proper-
= w,, the drift velocity is zerd Sincef(w,n,) depend on the ties of the particle$12].
geometry of the particle but in general not its size, the fre- We conclude that our scheme allows experimental sepa-
quency wg will depend on the Shape of the partic]e_ This ration of particles with different Iengths of the axes along the
forms the basis for shape dependent separation of ellipsoiddirection of motion by using off-resonant electric fields. By
particles; by tuning the frequency of the electric field appro-applying a field near a frequenay, (for instance a reso-
priately one may, for instance, make particles of differenthance frequengyat which Rée,f(w)] changes sigfey is
shapes go in opposite direction. One example of when thithe relative dielectric function of the medium ahd) is the
happens is if,f(w,n,) has a pole at the frequeney, (the  frequency dependent part of the polarizabiliarticles of
imaginary part ofs,f is large. Then(through the Kramer- different shape can be separated.
Kronig relation and hence causalitthe real part of the po-
larizability changes sigf28]. Precisely at the resonance fre- ACKNOWLEDGMENTS
guency oy, we have that Rey,f)=0, and therefore the
electric force on the particle is zefsee Eqs(1) and(13)].
However, the imaginary part of,f is large atwy and a
strong absorption occurs either in the solvéhn(e,,) is
large] or in the particlg Im(f) is largd. One then gets heat-
ing of the solvent and corresponding convection effect may APPENDIX: ELLIPTIC SHAPE FUNCTIONS
be important at this frequency. One must therefore be careful | this appendix we give the definitions of different enti-
to tune the frequency sufficiently far below or abawg in  ties used in the paper.
order to avoid convection effects that may affect the shape | et ys first define
dependent separation discussed in this paragraph. From Eqg.
(10) we see thaf ., has poles at frequencies, such that __ bbb, (= ds
gp(wo)=1—1/n,. From Eq.(11) we notice that a coated Q= 2 JO R(s)’ (A1)
ellipsoid, in general, has poles at different frequencies than
does an uncoated particle. What frequency range that is mogtere
appropriate for separation is thus determined by the fre-
quency dependence of the dielectric functions. We wish to R(s)=[(bf+s)(bj+s)(bZ+5)]*2, (A2)
keep our results as general as possible, and do not consider o - o
any specific dielectric functiofwhich in turn would require  Bu (U=X,y,Z) are the principal radii of an ellipsoid. We also
a microscopic treatment define the so-calledepolarization factors

A particularly interesting case of a coated particle is a cell
(the coating being the cell membrangVe are currently in-
vestigating these kinds of structures using microscopic mod-
els for the dielectric functions of the cell membrane and the
cell interior. In particular, we want to find out whether there It is straightforward to show that the depolarization factors
are frequencies such that [Ref(w,n,)] changes sign, satisfy the sum rul¢24],
which would allow for efficient separation of cells with re-
spect to shape. An additional complication in the study of nytny+n,=1. (Ad)
cells is that their membranes are “soft,” and hence electric
field induced deformations can play a role in their respons
to an external field. Furthermore, the dielectric function of
the cell membrane need not be isotropic.

The method described so far separates particlesmue-

This project was supported by the Swedish Natural Sci-
ence Research Council. We are grateful for valuable com-
ments by Professor Mihir Sen.

(A3)

bxbybsz ds
n,=

2 Jo (b2+s)R(s)

rom this sum rule we directly obtaitby symmetry the
depolarization factors for a sphemg;=n,=n,=1/3.

The entitiesQ and n,, ny, andn, can be analytically
evaluated for a spherolnl,=b, . In order to be able to evalu-

ing bands(where the particles in different bands have differ- 2€ the above integrals, we have to (zjlstlngu;shzbetween two
ent sizes, shapes, or electric propeitiest us finally discuss  different shapeq:golatespherqu Be'=1-b;/b;=0 and

the possibility of separating particles into stablenmoving ~ ©oblatespheroidse<0 (see Fig. 1 In the case of a prolate
distinct bands, i.e., the particles becoming trappeaving ~ SPheroid we have

zero drift velocity and not being able to diffuse out of the )

band at different positions in the solvent depending on their n :1_6 In(E) _2e
properties. One such stable band separation technique is xiprolate™ ", 3 l-e
based on the idea of using a gradient in the dielectric func-

tion of the surrounding medium. As noted above the driftBy the sum rule, we furthermore have

. (AB)
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In the case of an oblate shape, we ggt€ —e?=0)
nz| prolate™ nyl prolate— 5 (1- nx| prolate)

1 1_ez|
|20 /"

In the case of an oblate spheroid, we hagyé= —e?=0)

2

b
1 Qloblate= Ezarctanq. (A10)

2¢?

1+e

1-e

. (A6)

The results above fo@ andn,, n,, andn, completely de-
termineg, [Eq. (14)] for oblate and prolate shapes.
1+ g2 By the above relations it is possible to relaeto the
nx|ob|ate=?(q— arctanq). (A7) depgla:jrization factors. Combining Ed#&\5), (A7), and(A9),
we fin

By the sum rule we find

1 %=e2(nx—1)+1. (A11)
r~'z|oblate: nyloblatezz(l_ nx|ob|ate) bl

1 (1+q° Notice that this result is valid for both prolate’t>0) and
:2_qz arctanq—1]. (A8B)  oblate @?<0) shapes. It is also straightforward to show that
Let us now evaluat®. Let us start with the case of a prolate Q 1-2¢en,
shape. EquatiofAl) then becomes E: ﬁ. (A12)
2 _
bfl 1+e 20
ler"'i"‘e_Z_e N1=e) (A9) Also this result is valid for both prolate and oblate spheroids.
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